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Abstract

The observed low e�ective thermal conductivity of porous silicon makes for its convenient fabrication and

integration as a thermal insulation layer in microelectronics. The observed average pore size is controlled by the
etching process and ranges between 1 and 100 nm, which on the low end is much less than the bulk phonon mean-
free path. This low e�ective conductivity, i.e., low e�ective phonon mean-free path, can be explained with the
inclusion of the e�ects of the phonon pore scattering and the pore randomness. The available two-dimensional

porous silicon pore-network simulations are used along with the Boltzmann transport equation to determine the
e�ective conductivity. It is shown that the hindering e�ect of the phonon pore scattering (due to re¯ection from the
solid-pore interface) is signi®cant for small pore size. Also, due to the dendritic structure of the pores, the hindering

e�ect of the pore-network randomness is signi®cant. The predictions are compared with the existing experiments
and a good agreement is found. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Porous silicon layers are formed on the surface of
locally or wholly doped silicon wafers. It can also be
formed away from the wafer surface by proper, distribu-

ted doping. The etching is by anodic dissolution (i.e.,
electrochemical etching) of the monocrystalline, im-
purity-doped silicon in aqueous, hydro¯uoric acid (HF)
solutions. The surface, porous-silicon layer is depicted

in Fig. 1. Due to the pore morphology, the e�ective con-
ductivity is not isotropic and a preferential conduction
heat ¯ow occurs along the y-direction. For the surface,

porous layer shown, the porous-layer thickness d may
be as small as a few micron and as large as desired (i.e.,

up to a few hundred micron). Micrograph of a typical
porous silicon surface is shown in Fig. 2. Due to its
photoluminescence capability and having physical prop-

erties greatly di�erent from the bulk material (such as
permeability, low e�ective thermal conductivity, and
low density), porous silicon is a promising material in
silicon-based integrated circuits and devices. As an

example, many thermal sensors operate are based on the
measurement of a small amount of thermal energy. This
minute amount of energy must cause a relatively large

temperature change in the sensing medium. Then this
medium must be small and well isolated from its sur-
roundings and a porous-silicon layer can be used.

Although complete backside etching is also possible for
insulation, it has a mechanical vulnerability disadvan-
tage compared to porous-silicon layer. Other appli-
cations, and the current knowledge about porous

silicon, are reviewed by Canham [1].
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The low e�ective thermal conductivity of porous sili-

con is expected to be due to the low-dimensionality of

the pore walls. This can result in the domination of

pore-surface scattering over the intra-solid attenuation.

The low conductivity is also due to the tortuous solid

conduction path and the presence of a low conduc-

tivity gas (i.e., air) in the pores. The random pore

structure (i.e., pore morphology), which varies greatly

with the wafer-etching conditions, is relatively well

documented. Simulations of the pore structure has also

been attempted using various models (namely the dif-

fusion-limited and the kinetic-limited models), and

good qualitative agreements have been found with the

observations. Measurements of the e�ective thermal

conductivity of porous silicon have also been made for

several di�erent wafer-etching conditions and also

after post-etching oxidation.

The Fourier treatment of the e�ective conductivity

tensor hKi, is made by averaging the energy equation

over an elementary volume representing the porous

medium. When the porous medium has a periodic

structure, successful predictions can be made [2].

Recent analytical solutions for periodic structures

include that of Bauer [3] for isotropic-periodic, and

Lee and Yang [4] for anisotropic-periodic structures.

As evident in Fig. 1, porous silicon shows a strong ani-

sotropy and also it is expected that simple, unit-cell

based representations will not be realistic and e�ective.

Nomenclature

a lattice constant
ap phonon acceleration vector (m/s2)
Ae, Aw control volume face areas normal to the

x-coordinate
Bn, Bs control volume face areas normal to the

y-coordinate

c speed of light (m/s)
rc volumetric heat capacity (J/m3 K)
d pore size (m)

D density of states (mÿ3)
f statistical distribution function
hP Planck's constant
I phonon intensity (W/m2 sr)

k thermal conductivity (W/m K)
K thermal conductivity tensor (W/m K)
l unit cell linear dimension (m)

L length (m)
M total number of ordinate direction
Ãn normal vector

p interface scattering parameter
q heat ¯ux (W/m2)
Rd di�usive re¯ectivity

S source term
t time (s)
T temperature (K)
Td di�usive transmissivity

up speed of sound (m/s)
DV volume (m3)
wm angular weights

x coordinate along the porous silicon layer
(m)

y coordinate across the porous silicon

layer (m)

Greek symbols
dr mean interface roughness (m)
e porosity

lp phonon mean-free path (m)
l carrier wavelength (AÊ )
m directional cosine

x directional cosine
sSB Stefan±Boltzmann constant for phonon

(W/m2 K4)

sa absorption coe�cient (mÿ1)
sex extinction coe�cient (mÿ1)
ss scattering coe�cient (mÿ1)
t relaxation time (s)
o angular frequency of phonon (sÿ1)
F phase function

Superscripts

+ upper hemisphere direction
ÿ lower hemisphere direction

Subscripts
f ¯uid

d location y � d
m angular index
n, s, e, w compass direction

p phonon
p control volume center point
s solid or scattering

0 location y � 0
1 medium 1
2 medium 2
12 from medium 1 into medium 2

21 from medium 2 into medium 1
6 longitudinal
_ transverse

Other symbol
hi volume averaged value
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Kaviany [5] provides a review along with a number of

correlations for the e�ective conductivity and their

conditions of applicability.

In direct simulation of the e�ective conductivity ten-

sor rather than imposing a prescribed, simple structure,

the pore structure can be scanned from micrographs

(two- and three-dimensional structures). This has been

done by Nishioka et al. [6] for porous iron (sintered

iron particles). The two-dimensional computational

grid consists of the same number of pixels as the

scanned image. Bakker [7] also discusses the import-

ance of the inclusion of the actual morphology.

Other than the pore morphology, the size e�ect and

the chemical changes (such as oxidization), also in¯u-

ence hKi. The pore-wall length scale of porous silicon

can be small compared to the bulk phonon mean-free

path lp. Then, the silicon-pore interface phonon scat-

tering becomes important. This causes a decrease in

Fig. 1. A schematic of porous silicon layer considered.

Fig. 2. SEM (top view) of a surface porous layer etched in pÿ silicon wafer.
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the e�ective phonon mean-free path [8]. This reduction
in hKi becomes more pronounced with a decrease in

the ratio of the average pore-wall thickness to the bulk
mean-free path.
The oxidization of porous silicon (which is rapid

due to the availability of a large speci®c surface area)
for the mesoporous silicon is examined by Drost et al.
[9], where they show that hKi decreases upon oxi-

dation. This is because, at room temperature, bulk
thermal conductivity of pure silicon is about 149 W/m
K and that of silicon oxide is about 1.5 W/m K.

Benedetto et al. [10] and Gesele et al. [11] have not
addressed the oxidization in the discussion of their ex-
perimental results.
Here we use existing pore-network simulations for

porous silicon and the Boltzmann transport equation
for phonons, to allow for the e�ects of the pore ran-
domness, low dimensionality of the pore wall, and the

pore-surface scattering. We also compare the predicted
results with those obtained using the bulk conductivity
and the Fourier law (i.e., no low dimensionality), and

those based on the unit-cell models (i.e., no random-
ness). Finally, we compare the predictions with the
available experiments.

2. Pore network

The morphology of porous-silicon layers is desig-
nated by the average porosity hei, the average pore size

hdi, the pore-size distribution, and the pore geometry.
A wide variety of morphologies is achievable depend-
ing on the surface crystal plane orientation, impurity

type, electrical resistivity of the doped silicon, and the
electrochemical parameters such as HF concentration,
electrical current density, anodization time, front- and
back-side irradiation, and temperature. The pore size

can be controlled over three orders of magnitude from
nanometers to micrometers and the average porosity
of the obtained layer hei can be tuned from 0.10 to

0.90. The porosity decreases substantially upon oxi-
dation.
The pore morphology is characterized by the pre-

sence of mesopore and macropore structures. The ge-
ometry of the mesopore structures can be divided into
columnar (i.e., anisotropic) and equiaxed (i.e., isotro-
pic). For the pÿ-type silicon wafers, hd i is generally

small and the structure is equiaxed. For the p�-type,
hd i is larger and the pores are more columnar. The
trend is basically the same for the n-type silicon

[12,13]. The n-type silicon etched with a light illumi-
nation is very similar in structure to the p-type silicon.
However, the pore diameters in n-type silicon (100 nm

or more) are considerably larger than the p-type sili-
con. An overview of the di�erent morphologies is
given in Ref. [14]. Fig. 3 presents a summary of the

above morphological characteristics of the porous sili-
con layers with the impurity as a variable.

The mechanisms of formation of porous silicon has
been extensively studied, but is not completely clear.
The di�usion-limited model, proposed by Smith et al.

[15], is one of the accepted models for the pore for-
mation. It explains pore formation from the di�usion
of an electroactive species, such as holes and electrons,

to or from the silicon interface. The computer simu-
lations of the porous silicon formation using the dif-
fusion-limited model, shows a striking resemblance to

the micrographs. Fig. 4 is a typical pore structure
obtained from the di�usion-limited simulation. The
®gure also shows the representive elementary volumes
chosen. Each axis gives the grid number in that direc-

tion.
A typical pore-size distributions obtained by nitro-

gen adsorption, for the pore structure in Fig. 2, is

shown in Fig. 5(a). The di�usion-limited model does
not address the pore size. The dimensionless pore size
distribution for the pore network of Fig. 4 is shown in

Fig. 5(b). The average pore size for simulation can be
estimated using this similarity, although depending on
the dopant used and the etching applied, di�erent pore

distributions are obtained.

3. Energy equation with Fourier law

On a macroscopic scale, conductive heat transfer
can be accurately represented by the Fourier law and

energy equation as

q � ÿkrT, r � q � 0: �1�
From the kinetic theory, the thermal conductivity of
non-metallic solids can be related to their other physi-

cal properties as [8]

k � rcpuplp=3, �2�

where rcp is the lattice heat capacity, up is the phonon
speed, and lp is the phonon mean-free path. Although
the laws of macroscopic heat transport are well

known, there exist regimes of size and temperature
where such laws are no longer applicable [16±18].
Recent experiments show that the phonon scattering at
the interface of small, dissimilar materials is consider-

able enough to reduce the heat transfer rate [19±21].
Here, for prediction of hKi, we begin by using the

bulk thermal conductivity of silicon along with the

Fourier treatment. Then the e�ect of the pore mor-
phology of porous silicon on the e�ective thermal con-
ductivity is examined. In the next section, the

Boltzmann treatment is applied to include the low-
dimensionality e�ect.
Schematic diagrams of two-dimensional unit cell,
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and random network models of porous silicon are

shown in Fig. 6(a) and (b). The room temperature

thermal conductivity of pure silicon (ks � 149 W/m K)

is used. The doping e�ect which can be signi®cant at
low temperatures [22], is not included. In order to
compare the e�ective thermal conductivity of various

porous silicon layers, the average pore size hd i, the
average porosity hei, and the pore morphology, are
assumed to be independent of depth d [13].

Experiments [11] show that the layer thickness does
not in¯uence the e�ective thermal conductivity hkiyy.

3.1. Solution method and veri®cation

Fig. 4 depicts a typical, simulated two-dimensional
pore structure for porous silicon. The air-®lled pores

are shown with shade. The pore structure which is
available as a digital data, is used for the grid net. The
energy equation (1) is discretized using the ®nite-
volume formulation [23] and then solved using the

BASIS solver [24]
When the heat ¯ows across the porous silicon layer,

the left and the right control surfaces are taken as

adiabatic. The lower and the upper surfaces have pre-
scribed temperatures T0 and Td, respectively. The ther-
mal conductivity jump, across the air±silicon interface,

is presented by the harmonic mean of kf (air, kf �
0:0267 W/m K) and ks (silicon, ks � 149 W/m K) [23].
The e�ective thermal conductivity tensor hKi, and

Fig. 4. Pore network and the grid system used. Here the aver-

age porosities hei � 0:278 obtained from di�usion-limited

simulations by Smith and Collins [34].

Fig. 3. A classi®cation of the pore morphology, average porosity hei, and average pore size hdi for an n- and p-type porous silicon.
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its component across the porous silicon layer hkiyy, are
determined from

hqi � ÿhKi � rT, hkiyy � ÿ
hqiyy

�T0 ÿ Td �=d , �3�

where the y-direction heat ¯ux hqiyy is found from

hqiyy �
1

2L

 �L
0

ÿk@T
@y
jy�0 dx�

�L
0

ÿk@T
@y
jy�d dx

!
: �4�

The convergence criterion is that the heat ¯uxes at y �
0 and d be di�erent by less than 0.01%. The lateral
e�ective thermal conductivity hkixx is found similarly.

Validations were made by comparing the computed
hki for a cubic array of square inclusions with those
reported in Ref. [25]. Complete agreement was found.

3.2. Selection of representative elementary volume

The representative elementary volume was selected

by progressively increasing the grid net until the com-

puted volume-averaged porosity hei and e�ective con-

ductivity hki no longer change noticeably. As expected,

with the increase in the grid net, the computation time

increases substantially. Table 1 and Fig. 7 show the

grid size e�ect on the e�ective thermal conductivity

Fig. 6. Schematic diagrams for (a) the two-dimensional unit

cell, and (b) the simulated pore-network structure.

Fig. 5. Typical pore-size distribution for porous silicon: (a) ex-

periment, and (b) from pore structure shown in Fig. 4.
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and the average porosity for the asymptotic average

porosity hei � 0:278. The corresponding grid nets are

shown in Fig. 4, for grid nets A to E. As a compro-

mise, the 300 � 300 grid (grid net D) is chosen for this

microstructure.

For lower porosities, a larger grid net is needed to
reach the asymptotic average porosity and e�ective

conductivity. For example, for hei � 0:092 the com-
puted hkiyy may not reach the asymptotic value even
when the largest available grid (i.e., 2000 � 2000) is

used. This structure is shown in Fig. 8. Also, note that
for the columnar structures, the structural (and conse-
quently the transport) anisotropy is quite substantial.

4. Boltzmann transport equation

The Boltzmann transport equation is often used to
model transport by particles that follow an arbitrary
distribution. In a general form, the equation can be

written as [8]

@ f

@ t
� up � rrf� ap � ruf �

�
@ f

@ t

�
s

: �5�

Using the analogy between photons and phonons as
wave packets of energy, the intensity of phonons I is
de®ned as [26]

Table 1

Grid dependency of the average porosity hei and the e�ective

thermal conductivity hkiyy

Grid (Mx �My) heia hkiyy (W/m K)

50 � 50 (A) 0.262 28.27

100 � 100 (B) 0.277 18.01

200 � 200 (C) 0.279 17.83

300 � 300 (D) 0.277 16.31

400 � 400 (E) 0.277 16.21

a The asymptotic average porosity is heiN41�0:278.

Fig. 7. The variation of average porosity hei along (a) x-direc-

tion, and (b) y-direction and their dependence on grid system

of Table 1.

Fig. 8. Typical pore morphology (hei � 0:092) obtained from

di�usion-limited simulation by Smith and Collins [34].
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I � 1

4p

X
m

�omax

0

jup,mj f hPoDm�o� do, �6�

where D is the density of the states per unit volume, f
is the phonon distribution function, hP is the Planck's

constant, jup,mj is the magnitude of the phonon group
velocity, and o is the phonon frequency. The sum-
mation index m is made over the three phonon polariz-

ations. By multiplying Eq. (5) by jup,mjhPoDm�o� and
integrating it over all frequencies, the Boltzmann trans-
port equation can be transformed to the equation of

phonon radiative transfer [16], i.e.,

1

up

@I

@ t
� m

@I

@x
� x

@I

@y
� I 0�T�x�� ÿ I

upt�T� , �7�

where m and x are the directional cosines. It is evident
that this equation is similar to the photon equation of

radiative transfer [27]

1

c

@I

@ t
� m

@I

@x
� x

@I

@y
� saIb ÿ sexI

� ss

4p

�
4p
I
ÿ
r, Ãs 0

�
F
ÿ
r, Ãs 0, Ãs

�
dF 0, �8�

where c is the speed of light, sa, sex, and ss are
absorption, extinction, and scattering coe�cients, and
F is the phase function. This similarity gives an easy

access to the solution methods which are well devel-
oped for the equation of radiative transfer.
For steady state, the two equations (7) and (8) are

exactly the same if scattering is neglected (i.e., ss � 0).
This does not mean that Eq. (7) can deal with only
non-scattering media. As will be shown later, the main
reduction of the heat ¯ow rate is due to the scattering

mechanism such as defects, dislocations, boundaries
and particle interactions. So the inclusion of scattering
e�ects is important in phonon transport. The various

scatterings are modelled using relaxation time t, in Eq.
(7). In Eq. (7), several bulk material properties are pre-
scribed, these include the speci®c heat, the phonon

group velocity, and the phonon mean-free path (or
relaxation time).
Once the intensity is found by solving Eq. (7), the

radiative heat ¯ux can be determined from

q�r� �
�
F�4p

mI�r, F� dF: �9�

4.1. Solution method and veri®cation

The discrete ordinate method (SN method) is a tool
to transform the equation of radiative transfer into a

set of simultaneous partial di�erential equations. This
is based on a discrete representation of the directional
variation of the radiative intensity I. A solution to the

transport problem is found by solving the equation of
radiative transfer for a set of discrete directions span-

ning the entire solid angle. The integrals over the solid
angle are approximated by numerical quadrature. This
method is widely accepted and a comprehensive dis-

cussion is available [28].
For a speci®c ordinate direction m, de®ned by

Fm � �mm, xm�, Eq. (7) can be approximated as�
mm

@

@x
� xm

@

@y
� sa�x, y�

�
Im�x, y�

� sa�x, y�Ib�x, y�: �10�

To solve the discrete ordinate equation, the rectangular
enclosure is subdivided into small control volumes in a

Mx �My net. Within each control volume, the
spatially discretized equation for the radiative intensity
in the ordinate direction Fm is derived as�
mm�AeIem ÿ AwIwm �

� xm�BnInm ÿ BsIsm �
�� DVIpm � DVSpm

for m � 1, . . . , M,

�11�

where e, w, n, s are the boundaries in the compass
directions and p is the center point of the control
volume. The area and volume elements assume a unit

depth in the z direction.
The number of unknown Is in Eq. (11) are reduced

by using one of several relationships between the con-

trol-volume boundary intensities and the center point
intensity. The weighted diamond di�erence scheme is
used in this study to relate the intensities in the control

volume. The weighted relationship of the cell boundary
intensities to the average intensity in the cell is
expressed as

Ipm � wxmIem � �1ÿ wxm �Iwm

� wymInm �
ÿ
1ÿ wym

�
Ism: �12�

To avoid negative intensities, a scheme suggested by
Lathrop [29] is applied in selecting the di�erencing
weights.

If Iwm and Ism are assumed to be known, where the
iteration is in the direction with a positive directional
cosines and in increasing space dimensions, then Eq.

(11) can be reduced to eliminate the intensities Iem and
Inm, using Eq. (12). Solving for Ipm yields

Ipm � mmAIwm � xmBIsm � DVSpm

mmAe=wxm � xmBn=wym � DV
,

for mm, xm > 0,

�13�
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where

A � �1ÿ wxm �Ae=wxm � Aw

B � ÿ1ÿ wym

�
Bn=wym � Bs: �14�

Special attention is needed for the selection of the ordi-
nates set, mm and xm. To satisfy the continuity at the

interface, the set of ordinates and weights should also
satisfy the ®rst moment over a half range, that is,�

Ãn�Ãs<0
j Ãn � Ãsj dF �

�
Ãn�Ãs>0

Ãn � Ãs dF � p �
X
Ãn�Ãs>0

wi Ãn � Ãsi: �15�

The set of ordinates and weights satisfying Eq. (15) is
taken from Fiveland [30].
Once all directional intensities for each ®nite volume

have been calculated, the values for the boundary and

source terms may be updated, and the procedure is
repeated until the convergence criteria are met.
Convergence is checked during the iteration process

using the cell-average intensities at the current and the
previous iterations. It is assumed that the convergence
is obtained when the maximum percentage error of the

intensities is less than 0.0001%.
In the limit where the domain length scale is large

compared to phonon mean-free path, the Fourier law

should be recovered. In this optically thick case, the
di�usion approximation is valid. Considering the jump
boundary condition, Deissler suggested the following
solution [31]

q � sSB

ÿ
T 4

1 ÿ T 4
2

�
3

4

�
L

l

�
� 1

1 4sSBT
3DT

3

4

�
L

l

�
� 1

: �16�

Comparing Eq. (16) with Eqs. (1) and (2), the Stefan±
Boltzmann constant sSB for phonon can be obtained
as

sSB � rcpup

16T 3
: �17�

As a validation, as shown in Fig. 9, the predicted ther-

mal conductivity of silicon approaches as asymptotic
behavior (Fourier behavior) as the domain size
increases.
For a further validation, the thermal conductivity of

silicon layer is compared with the experiment by
Asheghi et al. [32]. Good agreement is found in the ex-
perimental error range. Also, the predicted results for

the one-dimensional, multi-layer composites are com-
pared with the available results [18]. The boundary
and interface between layers are shown in Fig. 10(a).

Complete agreement is found, as shown in Fig. 10(b).
The room-temperature properties used in the compu-
tation of thermal conductivity of GaAs/AlAs and Si/

Ge layer composites are given in Table 2. Note that
the lattice mismatch between Si/Ge layer composite is
much larger than that of GaAs/AlAs, but the agree-

ments are still fair. This agreement gives con®dence to
the analysis of porous silicon, where phonons are
almost totally re¯ected from silicon±air interface.

4.2. Boundary and pore interface conditions

The treatment of boundaries and pore interface in

the two-dimensional, unit-cell model (Fig. 6(a)) and
the network model (Fig. 6(b)) is similar to that for the
one-dimensional, multi-layer composites.

Ziman [8] proposed the following expression for esti-
mating the interface scattering parameter p:

p1exp
�
ÿ 16p3d2r =l

2
�
, �18�

where l is the carrier wavelength and dr is the mean

interface roughness. At room temperature, the domi-
nant phonon wavelength is l010±20 AÊ . Then, even
for a monolayer the roughness is dr03 AÊ . This gives

an interface scattering parameter of nearly zero, and
allows for the assumption of a totally di�use interface.
The interface between layers re¯ects and transmits

Fig. 9. Predicted asymptotic behavior of thermal conductivity

with respect to acoustical thickness.

Table 2

Room-temperature properties used in the computation of the

thermal conductivity of GaAs/AlAs and Si/Ge superlattices

Material rcp � 106 (J/m3 K) up (m/s) lp (AÊ )

GaAs 1.71 3700 208

AlAs 1.58 4430 377

Si 1.66 6400 409

Ge 1.67 3900 275
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phonons and adds to the resistance to the heat ¯ow.

Referring to Fig. 10(a) for a totally di�use interface,
the energy balance at bottom surface gives

I �1 �x � 0� � Rd12

p

�
F 0I ÿ1 �x � 0� dF 0

� Td21

p

�
F 0I �p2�x � 0� dF 0,

�19�

where I �p2 is the phonon intensity at x � 0 in the layer
preceding layer 1. Using periodic conditions, I �p2 is
expressed as [18]

I �p2 � I �2 �
up,2rcp,2�T0 ÿ TL �

4p
: �20�

Similarly, the energy balance at the internal interface
and the top surface, forming one period of the multi-
layer composite, gives

I ÿ1 �x � xi � �
Rd12

p

�
F 0I �1 �x � xi � dF 0

� Td21

p

�
F 0I ÿ2 �x � xi � dF, 0

�21�

I �2 �x � xi � �
Rd21

p

�
F 0I ÿ2 �x � xi � dF 0

� Td12

p

�
F 0I �1 �x � xi � dF 0,

�22�

I ÿ2 �x � xL � �
Rd21

p

�
F 0I �2 �x � xL � dF 0

� Td12

p

�
F 0I ÿn1�x � xL � dF 0,

�23�

where the integration with respect to the solid angle is
over the half space and Rdij and Tdij are the re¯ectivity

and transmissivity at an interface for phonons incident
from the i layer towards the j layer.
The relation between the re¯ectivity and transmiss-

ivity, and the transmissivity at the totally di�use scat-
tering limit, are obtained based on the di�use scatter-
ing limit model of Swartz and Pohl [33], i.e.,

Tdji � Rdij � 1ÿ Tdij �24�

Tdij � rcp, jup, j

rcp,iup,i � rcp, jup, j
: �25�

4.3. Unit-cell model

The unit cell described in Fig. 6(a) is a starting point
for modeling the e�ective thermal conductivity of a

porous medium. When the porous medium has a per-
iodic structure, successful predictions have been made
[2±4]. These are based on the Fourier treatment and
the e�ect of the unit cell (or pore) size has not yet

been addressed. On the other hand, the existing treat-
ments based on Boltzmann transport equation are for
one-dimensional layers, although it gives elegant semi-

analytic solution. Considering the practical appli-
cations such as the porous silicon, the two-dimensional
extension of the Boltzmann approach is needed.

Here we have considered three pore sizes (d � 1, 3, 5
nm). Given the pore sizes, the unit cell linear dimen-
sion l is determined using the porosity de®ned as

Fig. 10. Comparison of the predicted thickness dependence of

thermal conductivity, in multi-layer composites (a) with the

available predictions (b).

J.D. Chung, M. Kaviany / Int. J. Heat Mass Transfer 43 (2000) 521±538530



e � d 2=l 2. The e�ective thermal conductivity is then

determined from

hkyyi � ÿ
hqiyy

�T0 ÿ Tl �=l , �26�

where the y-direction radiation heat ¯ux hqiyy is

hqiyy �
1

2l

(�l
0

qyy�x, 0� dx�
�l
0

qyy�x, l� dx

)
: �27�

The radiation heat ¯ux, qyy is de®ned in Eq. (9). The
convergence criterion requires that the ®rst and second

terms be very close (i.e., much less than 1% for small
network grid and as large as a few percent for the lar-
gest grid).

4.4. Selection of representative elementary volume

For the random pore network model, the representa-
tive elementary volume is similar to that of Section

3.2. Table 3 lists the grid systems tested for the pore
network with the asymptotic average porosity of
hei � 0:201. The corresponding selected pore distri-

bution is shown in Fig. 11 for grids A to G. For com-
putational economy, the 315� 315 grid (grid G) is
selected for this porosity. Note that every grid point in
Fig. 4 corresponds to four subgrids (two in x-direction

and two in y-direction) in Fig. 11, since additional sub-
grids are needed to handle the pore interface. Fig. 7(a)
and (b) show the porosity convergence for this grid

set.
Table 4 shows the e�ect of the discrete ordinate

quadrature sets for a 67� 67 grid net, d � 1 nm and

hei � 0:201, on the predicted e�ective conductivity.
The S4 approximation, which computes 12 ¯uxes over
the hemisphere, is used for all of cases considered.

5. Results and discussion

To show the e�ect of pore-network randomness, we
use the Fourier treatment of Section 3 and to show the
e�ect of pore size, we use the Boltzmann treatment of

Section 4. Gesele et al. [11] suggest a simple relation
for the combined e�ects of the morphology and the
size. They suggest that Eq. (2) be modi®ed as

hki � 1

3
�1ÿ hei�3rcpupl, �28�

where they suggest that the pore-network randomness
e�ect be modeled with �1ÿ hei�3 and the pore-size

e�ect with l. However, this does not correctly predict
the experiments for low porosity and does not satisfy
the hei40 asymptote, unless l is continuously changed

with l4lp for hei40.
To explain the e�ect of pore-network randomness

and the pore size on hKi, four di�erent computations
are made, namely, (1) Fourier treatment plus unit cell,

(2) Fourier treatment plus network, (3) Boltzmann

Table 3

The e�ect of grid size on the e�ective conductivity hkiyy for

the S4 quadrature set for hei � 0:201

Grid

hkiyy (W/m K)

d � 1 nm d � 3 nm

67� 67 8.8659 21.4229

87� 87 6.0112 15.1683

131� 131 5.5386 13.9619

159� 159 6.3194 15.6150

203� 203 4.8340 11.9502

251� 251 4.2461 10.3032

315� 315 3.3201 8.3454

Fig. 11. The grid system used and the typical pore mor-

phology (hei � 0:201).

Table 4

The e�ect of the discrete ordinate quadrature sets (67� 67

grid, d � 1 nm), hei � 0:201 on the e�ective conductivity hkiyy

hkiyy (W/m K)

S4 8.8659

S6 8.9223

S8 8.6231

S10 9.0529

J.D. Chung, M. Kaviany / Int. J. Heat Mass Transfer 43 (2000) 521±538 531



treatment plus unit cell, and (4) Boltzmann treatment
plus network.

5.1. E�ect of pore-network randomness

To demonstrate the e�ect of pore-network random-

ness, hkiyy is determined based on the Fourier treat-
ment using the simulated pore-network model. The
pore structure and the distribution of the normalized
temperature �Tÿ Td�=�T0 ÿ Td�, for grid D in Fig. 4,

are shown together in Fig. 12. The air-®lled pores are
shown with shade. Fig. 12 shows how the high conduc-
tivity solid ®ngers the heat into the layer, while the

low conductivity air causes a large temperature drop.
The isothermal lines follow the high-conductivity solid-
phase distribution. Also note that the random pore

structure requires a large representative elementary
volume for achieving an asymptotic (grid-size indepen-
dent) behavior.

For a variety of applications, high porosity (e.g.,

hei > 0:4) porous silicon is more desirable and most ex-

periments have been conducted for this range.

However, the simulation of Smith and Collins [34] are

for relatively low porosities (i.e., hei < 0:28). For com-

parison with the experiments, the low-porosity simu-

lations can be slightly extrapolated. Two additional

pore networks with slightly larger porosities

(hei � 0:322 and 0.380) are formed using the available

network for the largest porosity (hei � 0:278). Di�erent

enlargement factors are applied to the solid phase and

the pore volume. Then the enlarged domain size is

scaled to its initial value. For validation of this pro-

cess, a pore network with hei � 0:252, is produced

using the available pore network with hei � 0:208. It is
found that the predicted e�ective thermal conduc-

tivities are in good agreement.

The uncertainty associated with extensive extrapol-

ations is partly due to the highly irregular pore struc-

Fig. 12. The pore-network structure and predicted temperature distribution for grid D in Fig. 4. The heat ¯ows across the porous

layer.
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ture and partly due to lack of availability of a large set

of simulated networks.
Fig. 13 shows the predicted variation of the e�ective

thermal conductivity hkiyy with respect to porosity. By
noting the di�erence with the results of the unit-cell

model, we note that the heat transfer is signi®cantly
hindered by the pore-network randomness.

5.2. E�ect of phonon pore scattering

The mean-free path can be determined using Eq. (2).
At room temperature bulk thermal conductivity of sili-

con is ks � 149 W/m K, and its volumetric heat ca-
pacity is rcp � 1:659� 106 J/m3 K) [35]. A special
average of the transverse and the longitudinal phonon
velocities, uÿ1p � 1

3 �2uÿ1p,T � uÿ1p,L�ÿ1 � 6:53� 103 m/s, is

used [36]. This gives the bulk phonon mean-free path
lp,0040 nm. According to Flick et al. [37], the size
e�ects on heat conduction becomes important when

hli < 7lp,0 ' 280 nm and this is larger than the average
pore size hd i for porous silicon considered here. The
small pore wall thickness introduces an additional re-

sistance to heat ¯ow.
To apply the Boltzmann transport equation, the

wall-pore dimension should be larger than the phonon
wavelength. At room temperature, the phonon wave-

length for silicon is approximately ayD=T ' 1:1 nm
[17]. Also, the quantum size e�ect is negligible in this
large length scale. We also note that as the linear

dimension of the representative elementary volume
increases, the optical thickness increases. Also, when
the transmission through the network is very small, nu-

merical di�culties are encountered [38]. The average
pore size for porous silicon can be controlled over
three orders of magnitude from order of 1±100 nm.

Based on the experimental results and to demonstrate

the size e�ect, three pore sizes (hd i � 1, 3 and 5 nm)

are used.

Fig. 14 shows the predicted e�ective thermal conduc-

tivity, de®ned in Eq. (26), for the unit-cell model using

the Fourier and Boltzmann treatments. Since the e�ec-

tive phonon mean-free path lp is limited by the pore

boundary scattering, the reduction of e�ective thermal

conductivity is apparent as the pore size hd i is

decreased. Abrupt changes near e � 0:2 is found. This

occurs as the ratio of pore size to the unit cell size

reaches a threshold value where a signi®cant amount

of the phonon energy is re¯ected at the pore boundary.

Note that the pore boundary scattering is dominant

here, because of the long bulk mean-free path lp,0

compared to the unit cell size hl i.
Fig. 15 shows the temperature distributions obtained

from Boltzmann treatment (Fig. 15(a)±(e)) with respect

to pore size d. The pore size varies between d � 1±500

nm. The asymptotic temperature distribution (d 41)

obtained from the Fourier treatment is also shown

(Fig. 15(f)). The results are for e � 0:16. The agree-

ment between the two treatments, for large d, is clear

in Fig. 15. From the Boltzmann treatment with a small

pore size, a temperature jump is found at the interface.

This is similar to that for the one-dimensional, multi-

layer composite. Due to the total re¯ection at the pore

boundary, some localized hot and cold regions are

found below and above the pore.

To account for the size e�ect, Majumdar [16]

suggests a size-a�ected, mean-free path, given by

Fig. 13. The e�ect of pore-network randomness on e�ective

conductivity is shown by comparing the predicted e�ective

thermal conductivity using the Fourier treatment plus net-

work with the Fourier treatment plus unit cell.

Fig. 14. The e�ect of phonon pore scattering on the e�ective

conductivity is shown by comparing the predicted e�ective

thermal conductivity using the Fourier treatment plus unit

cell with the Boltzmann treatment plus unit cell.

J.D. Chung, M. Kaviany / Int. J. Heat Mass Transfer 43 (2000) 521±538 533



F
ig
.
1
5
.
T
h
e
te
m
p
er
a
tu
re

d
is
tr
ib
u
ti
o
n
s
o
b
ta
in
ed

fr
o
m

th
e
B
o
lt
zm

a
n
n
tr
ea
tm

en
t
fo
r
(a
)
d
=

1
,
(b
)
1
0
,
(c
)
2
5
,
(d
)
5
0
,
a
n
d
(e
)
5
0
0
n
m
.
T
h
e
a
sy
m
p
to
ti
c
te
m
p
er
a
tu
re

d
is
tr
ib
u
ti
o
n

(d
4
1

)
o
b
ta
in
ed

fr
o
m

th
e
F
o
u
ri
er

tr
ea
tm

en
t
is
a
ls
o
sh
o
w
n
(
f)
.

J.D. Chung, M. Kaviany / Int. J. Heat Mass Transfer 43 (2000) 521±538534



lp � lp,0

1� 4

3

lp,0

l 0

, �29�

which may be used to determine ks in Eq. (2). For a
one-dimensional layer, the characteristic length l ' is the
layer thickness. But, for a two-dimensional unit cell,
we use an equivalent length de®ned as l 02 � l 2 ÿ d 2.
This is an equivalent length after the pore is removed

from the unit cell. Using this modi®ed ks in the
Fourier treatment of unit-cell model, the predicted
e�ective conductivities are shown in Fig. 14. The good

agreement with the results of the Boltzmann treatment
at the higher porosity is noted, although the asymp-
totic behavior at low porosity is not in agreement.
Also shown in Fig. 13 is the result using the Eq. (29)

with d � 10 nm. This gives lp � 0:158lp,0, which gives
a solid conductivity ks � 23:5 W/m K. This character-
istic length represents experimental samples A, B and a

in Fig. 17.

5.3. Lateral e�ective conductivity

Due to the anisotropic pore morphology, the e�ec-
tive conductivity is not isotropic and a preferential

conduction occurs along the y direction, shown in Fig.
1. The predicted variation of the lateral e�ective con-
ductivity hkixx with respect to porosity is shown in
Fig. 16. Here the ratio hkixx=hkiyy is also used to

emphasize the anisotropy. There are no available ex-
perimental data for comparison. The overall trend in
the porosity dependency is similar to that of hkiyy. The
pore branches completely break the solid-phase con-
nectivity and the resulting serial arrangement of phases
leads to a very low thermal conductivity. This is not

expected in three-dimensional structures, where the
solid-phase continuity results in higher e�ective con-

ductivity.

6. Comparison with experiments

The available experimental results are too few and

not consistent. They also lack su�cient geometrical in-
formation for a direct comparison with the predictions.
Drost et al. [9] used a dynamic conductivity measure-

ment technique based on the thermal waves traveling
in the specimen. However, as mentioned by Benedetto
et al. [10], the measurement technique by Drost et al.
is rather complicated and cannot be used for di�erent

sample types. Also, the undesirable e�ect of SiC layers,
which are needed to cover the porous silicon, in the
dynamic conductivity measurement, should be

removed. Benedetto et al. [10] measured hkiyy for po-
rous-silicon layers using a photoacoustic technique and
Gesele et al. [11] used the 3-o technique. The measure-

ments are summarized in Table 5. Among the par-
ameters, the porosity, the morphology, and the pore
size are used in the prediction. The pore sizes reported

by Drost et al., and Gesele et al., are well documented.
However, the pore sizes in the experiment of Benedetto
et al., are not given and are assumed to be similar to
those in experiments of Beale et al. [13].

The experimental results for hkiyy are shown along
with the various predictions in Fig. 17. Samples A, B,
II, III, and `a' have similar pore structure as shown in

Fig. 4, which is a highly-branched, columnar structure.
Sample III shows a large di�erence between the oxi-
dized and the fresh samples and the high values are

Fig. 16. The predicted variation of the lateral e�ective thermal conductivity hkixx with respect to porosity e.
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not in line with the other experimental results. Note

that the n-type silicon sample with the light illumi-
nation (II), is very similar to the p-type silicon samples
(A, B, III and a). The important di�erence is in its

large pore size (hd i0100 nm) compared to the p-type
samples (hd i010 nm for A, B, and a). Sample C is
also n-type, but light illumination is not applied. Smith

and Collins [14] report that the pore-like strait cylindri-
cal channels are produced for this sample. Thus for

smaple C, the heat ¯ow is not as much prohibited as
the highly branched structures. This explains the large
e�ective thermal conductivity of sample C. The results

for sample III without oxidation is questionable,
because the measured thermal conductivity is almost
near the value for the parallel arrangement of phases

which is the theoretical upper limit.
Samples I and b±e also have similar pore structures,

i.e., equiaxed. Thus, their thermal conductivity follows
the same trend, but is lower than that of columnar
structures.

Also shown in Fig. 17 are the various predictions.
These are Fourier treatments with the network model

and Boltzmann treatment with the same structure
models. The network models are limited to hei < 0:4.
Starting with the Boltzmann treatment with the unit-

cell model, we note that the e�ective thermal conduc-
tivity for pore sizes hd i � 1 and 3 nm are lower than
the experiments A and B. Since the thermal conduc-

tivity reduction is due to a combined e�ect of the pore
randomness and the pore size, the result of unit-cell

model, which includes only the size e�ect, should not
exceed the experimental results. There are several ex-
planations for this. The most obvious one is the uncer-

tainty in the estimation of the pore size. As the pore
size increases (i.e., hd i � 5 nm), the predicted e�ective
thermal conductivity becomes larger than the exper-

iments. Note that the pore size de®nition used in the
experiments is di�erent from that used in the simu-

lations. As shown in Fig. 6(b), the pore size in the
simulation is the grid size (as compared to the actual
pore size in experiments A, B, and C as shown in Fig.

6(b)). Then we expect the simulated pore sizes to be
smaller than the experiments. Currently there is no
clear correspondence between these two. The two-

dimensional limitation is another reason for this di�er-
ence. The three-dimensional e�ective thermal conduc-

tivity is expected to be larger [7].
Using the random pore network, the predicted e�ec-

tive thermal conductivity using the Fourier treatment

is shown in Fig. 17. As is evident, the predicted e�ec-
tive thermal conductivity is larger than the experiments

and this may be due to the size e�ect (pore scattering).
The combined e�ect of the pore-network random-

ness and pore size is shown through the Boltzmann

treatment plus the random network model in
Fig. 17. Although only three di�erent porositiesT
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(e � 0:177, 0:201 and 0.271) and two di�erent pore
sizes (hdi � 1 and 3 nm) are simulated, the signi®cant
reduction in the heat ¯ow rate by pore randomness

and pore scattering, is apparent.

7. Conclusions

Direct simulation of conduction through anisotropic

porous silicon layers is made, using two-dimensional
matrix structures along with the Boltzmann transport
equation. The observed low conductivity, i.e., lower
e�ective phonon mean-free path, can be explained with

the inclusion of the e�ects of the phonon pore scatter-
ing and the pore randomness. The hindering e�ect of
the phonon pore scattering (due to the re¯ection from

at the solid-pore interface) is signi®cant. Also, due to
the dendritic structure of the pores, the hindering e�ect
of the pore-network randomness is also signi®cant.

The predictions are compared with the existing exper-
iments and considering the lack of structural data in
the experiments, a good agreement is found.
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