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Abstract

The observed low effective thermal conductivity of porous silicon makes for its convenient fabrication and
integration as a thermal insulation layer in microelectronics. The observed average pore size is controlled by the
etching process and ranges between 1 and 100 nm, which on the low end is much less than the bulk phonon mean-
free path. This low effective conductivity, i.e., low effective phonon mean-free path, can be explained with the
inclusion of the effects of the phonon pore scattering and the pore randomness. The available two-dimensional
porous silicon pore-network simulations are used along with the Boltzmann transport equation to determine the
effective conductivity. It is shown that the hindering effect of the phonon pore scattering (due to reflection from the
solid-pore interface) is significant for small pore size. Also, due to the dendritic structure of the pores, the hindering
effect of the pore-network randomness is significant. The predictions are compared with the existing experiments
and a good agreement is found. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Porous silicon layers are formed on the surface of
locally or wholly doped silicon wafers. It can also be
formed away from the wafer surface by proper, distribu-
ted doping. The etching is by anodic dissolution (i.e.,
electrochemical etching) of the monocrystalline, im-
purity-doped silicon in aqueous, hydrofluoric acid (HF)
solutions. The surface, porous-silicon layer is depicted
in Fig. 1. Due to the pore morphology, the effective con-
ductivity is not isotropic and a preferential conduction
heat flow occurs along the y-direction. For the surface,
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porous layer shown, the porous-layer thickness 6 may
be as small as a few micron and as large as desired (i.c.,
up to a few hundred micron). Micrograph of a typical
porous silicon surface is shown in Fig. 2. Due to its
photoluminescence capability and having physical prop-
erties greatly different from the bulk material (such as
permeability, low effective thermal conductivity, and
low density), porous silicon is a promising material in
silicon-based integrated circuits and devices. As an
example, many thermal sensors operate are based on the
measurement of a small amount of thermal energy. This
minute amount of energy must cause a relatively large
temperature change in the sensing medium. Then this
medium must be small and well isolated from its sur-
roundings and a porous-silicon layer can be used.
Although complete backside etching is also possible for
insulation, it has a mechanical vulnerability disadvan-
tage compared to porous-silicon layer. Other appli-
cations, and the current knowledge about porous
silicon, are reviewed by Canham [1].
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Nomenclature

a lattice constant

a, phonon acceleration vector (m/s?)

Ao, Ay, control volume face areas normal to the

x-coordinate

control volume face areas normal to the

y-coordinate

speed of light (m/s)

volumetric heat capacity (J/m® K)

pore size (m)

density of states (m ™)

statistical distribution function

Planck’s constant

phonon intensity (W/m? sr)

thermal conductivity (W/m K)

thermal conductivity tensor (W/m K)

unit cell linear dimension (m)

length (m)

total number of ordinate direction

normal vector

interface scattering parameter

heat flux (W/m?)

diffusive reflectivity

source term

time (s)

temperature (K)

diffusive transmissivity

speed of sound (m/s)

volume (m?)

angular weights

coordinate along the porous silicon layer

(m)

y coordinate across the porous silicon
layer (m)

B, B
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Greek symbols
Or mean interface roughness (m)
€ porosity

Ap phonon mean-free pzjtth (m)

A carrier wavelength (A)

u directional cosine

& directional cosine

OsB Stefan—Boltzmann constant for phonon
(W/m? K%

Oa absorption coefficient (m™")

Oex extinction coefficient (m’l)

O scattering coefficient (m™")

T relaxation time (s)

w angular frequency of phonon (s~')

[0 phase function

Superscripts

+ upper hemisphere direction

— lower hemisphere direction

Subscripts

f fluid

0 location y = ¢

m angular index

n, s, e, w compass direction

p phonon

p control volume center point

S solid or scattering

0 location y =0

1 medium 1

2 medium 2

12 from medium 1 into medium 2

21 from medium 2 into medium 1

I longitudinal

L transverse

Other symbol
() volume averaged value

The low effective thermal conductivity of porous sili-
con is expected to be due to the low-dimensionality of
the pore walls. This can result in the domination of
pore-surface scattering over the intra-solid attenuation.
The low conductivity is also due to the tortuous solid
conduction path and the presence of a low conduc-
tivity gas (i.e., air) in the pores. The random pore
structure (i.e., pore morphology), which varies greatly
with the wafer-etching conditions, is relatively well
documented. Simulations of the pore structure has also
been attempted using various models (namely the dif-
fusion-limited and the kinetic-limited models), and
good qualitative agreements have been found with the
observations. Measurements of the effective thermal

conductivity of porous silicon have also been made for
several different wafer-etching conditions and also
after post-etching oxidation.

The Fourier treatment of the effective conductivity
tensor (K), is made by averaging the energy equation
over an elementary volume representing the porous
medium. When the porous medium has a periodic
structure, successful predictions can be made [2].
Recent analytical solutions for periodic structures
include that of Bauer [3] for isotropic-periodic, and
Lee and Yang [4] for anisotropic-periodic structures.
As evident in Fig. 1, porous silicon shows a strong ani-
sotropy and also it is expected that simple, unit-cell
based representations will not be realistic and effective.
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Fig. 1. A schematic of porous silicon layer considered.
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Fig. 2. SEM (top view) of a surface porous layer etched in p~ silicon wafer.

Kaviany [5] provides a review along with a number of
correlations for the effective conductivity and their
conditions of applicability.

In direct simulation of the effective conductivity ten-
sor rather than imposing a prescribed, simple structure,
the pore structure can be scanned from micrographs
(two- and three-dimensional structures). This has been
done by Nishioka et al. [6] for porous iron (sintered
iron particles). The two-dimensional computational

grid consists of the same number of pixels as the
scanned image. Bakker [7] also discusses the import-
ance of the inclusion of the actual morphology.

Other than the pore morphology, the size effect and
the chemical changes (such as oxidization), also influ-
ence (K). The pore-wall length scale of porous silicon
can be small compared to the bulk phonon mean-free
path Z,. Then, the silicon-pore interface phonon scat-
tering becomes important. This causes a decrease in
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the effective phonon mean-free path [8]. This reduction
in (K) becomes more pronounced with a decrease in
the ratio of the average pore-wall thickness to the bulk
mean-free path.

The oxidization of porous silicon (which is rapid
due to the availability of a large specific surface area)
for the mesoporous silicon is examined by Drost et al.
[9], where they show that (K) decreases upon oxi-
dation. This is because, at room temperature, bulk
thermal conductivity of pure silicon is about 149 W/m
K and that of silicon oxide is about 1.5 W/m K.
Benedetto et al. [10] and Gesele et al. [11] have not
addressed the oxidization in the discussion of their ex-
perimental results.

Here we use existing pore-network simulations for
porous silicon and the Boltzmann transport equation
for phonons, to allow for the effects of the pore ran-
domness, low dimensionality of the pore wall, and the
pore-surface scattering. We also compare the predicted
results with those obtained using the bulk conductivity
and the Fourier law (i.e., no low dimensionality), and
those based on the unit-cell models (i.e., no random-
ness). Finally, we compare the predictions with the
available experiments.

2. Pore network

The morphology of porous-silicon layers is desig-
nated by the average porosity (¢), the average pore size
(d), the pore-size distribution, and the pore geometry.
A wide variety of morphologies is achievable depend-
ing on the surface crystal plane orientation, impurity
type, electrical resistivity of the doped silicon, and the
electrochemical parameters such as HF concentration,
electrical current density, anodization time, front- and
back-side irradiation, and temperature. The pore size
can be controlled over three orders of magnitude from
nanometers to micrometers and the average porosity
of the obtained layer (¢) can be tuned from 0.10 to
0.90. The porosity decreases substantially upon oxi-
dation.

The pore morphology is characterized by the pre-
sence of mesopore and macropore structures. The ge-
ometry of the mesopore structures can be divided into
columnar (i.e., anisotropic) and equiaxed (i.e., isotro-
pic). For the p~-type silicon wafers, (d) is generally
small and the structure is equiaxed. For the p*-type,
(d) is larger and the pores are more columnar. The
trend is basically the same for the n-type silicon
[12,13]. The n-type silicon etched with a light illumi-
nation is very similar in structure to the p-type silicon.
However, the pore diameters in n-type silicon (100 nm
or more) are considerably larger than the p-type sili-
con. An overview of the different morphologies is
given in Ref. [14]. Fig. 3 presents a summary of the

above morphological characteristics of the porous sili-
con layers with the impurity as a variable.

The mechanisms of formation of porous silicon has
been extensively studied, but is not completely clear.
The diffusion-limited model, proposed by Smith et al.
[15], is one of the accepted models for the pore for-
mation. It explains pore formation from the diffusion
of an electroactive species, such as holes and electrons,
to or from the silicon interface. The computer simu-
lations of the porous silicon formation using the dif-
fusion-limited model, shows a striking resemblance to
the micrographs. Fig. 4 is a typical pore structure
obtained from the diffusion-limited simulation. The
figure also shows the representive elementary volumes
chosen. Each axis gives the grid number in that direc-
tion.

A typical pore-size distributions obtained by nitro-
gen adsorption, for the pore structure in Fig. 2, is
shown in Fig. 5(a). The diffusion-limited model does
not address the pore size. The dimensionless pore size
distribution for the pore network of Fig. 4 is shown in
Fig. 5(b). The average pore size for simulation can be
estimated using this similarity, although depending on
the dopant used and the etching applied, different pore
distributions are obtained.

3. Energy equation with Fourier law

On a macroscopic scale, conductive heat transfer
can be accurately represented by the Fourier law and
energy equation as

q=—kVT, V-q=0. )

From the kinetic theory, the thermal conductivity of
non-metallic solids can be related to their other physi-
cal properties as [8]

k = pepuply/3, 2)

where pc, is the lattice heat capacity, u, is the phonon
speed, and 4, is the phonon mean-free path. Although
the laws of macroscopic heat transport are well
known, there exist regimes of size and temperature
where such laws are no longer applicable [16-18].
Recent experiments show that the phonon scattering at
the interface of small, dissimilar materials is consider-
able enough to reduce the heat transfer rate [19-21].

Here, for prediction of (K), we begin by using the
bulk thermal conductivity of silicon along with the
Fourier treatment. Then the effect of the pore mor-
phology of porous silicon on the effective thermal con-
ductivity is examined. In the next section, the
Boltzmann treatment is applied to include the low-
dimensionality effect.

Schematic diagrams of two-dimensional unit cell,



J.D. Chung, M. Kaviany | Int. J. Heat Mass Transfer 43 (2000) 521-538 525

Acceptor Impurity

—» Donor Impurity

Concentration

Concentration
)
Columnar
n+-Typ € Pores
n-Type { | Increase
in{d)
Relatively Large Porosity
- and Carrier Depletion
n -Type \
Equiaxed Pores : Columnar Pores
Sma'11 (d) e i Increase in {d)
I ] 1
p-Type  p-Type p*-Type

Fig. 3. A classification of the pore morphology, average porosity (¢), and average pore size (d) for an n- and p-type porous silicon.

and random network models of porous silicon are
shown in Fig. 6(a) and (b). The room temperature
thermal conductivity of pure silicon (ks = 149 W/m K)

100 150

Fig. 4. Pore network and the grid system used. Here the aver-
age porosities (¢) =0.278 obtained from diffusion-limited
simulations by Smith and Collins [34].

is used. The doping effect which can be significant at
low temperatures [22], is not included. In order to
compare the effective thermal conductivity of various
porous silicon layers, the average pore size (d), the
average porosity (¢), and the pore morphology, are
assumed to be independent of depth o [13].
Experiments [11] show that the layer thickness does
not influence the effective thermal conductivity (k),,.

3.1. Solution method and verification

Fig. 4 depicts a typical, simulated two-dimensional
pore structure for porous silicon. The air-filled pores
are shown with shade. The pore structure which is
available as a digital data, is used for the grid net. The
energy equation (1) is discretized using the finite-
volume formulation [23] and then solved using the
BASIS solver [24]

When the heat flows across the porous silicon layer,
the left and the right control surfaces are taken as
adiabatic. The lower and the upper surfaces have pre-
scribed temperatures 7y and Ty, respectively. The ther-
mal conductivity jump, across the air—silicon interface,
is presented by the harmonic mean of k¢ (air, k¢ =
0.0267 W/m K) and k; (silicon, ks = 149 W/m K) [23].

The effective thermal conductivity tensor (K), and
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Fig. 5. Typical pore-size distribution for porous silicon: (a) ex-
periment, and (b) from pore structure shown in Fig. 4.

its component across the porous silicon layer (k),,, are
determined from

(@)yy

= —(K) - VT, _—
(@) = —(K) - VT, AT

(k)yy = (©)

where the y-direction heat flux (g),, is found from

L L
(dhyy = ﬁ(]g ke st | kG dv) @)
The convergence criterion is that the heat fluxes at y =
0 and o be different by less than 0.01%. The lateral
effective thermal conductivity (k). is found similarly.
Validations were made by comparing the computed
(k) for a cubic array of square inclusions with those
reported in Ref. [25]. Complete agreement was found.

(@)

Matrix  Pore

Heat Flux

(b)

Heat Flux

Fig. 6. Schematic diagrams for (a) the two-dimensional unit
cell, and (b) the simulated pore-network structure.

3.2. Selection of representative elementary volume

The representative elementary volume was selected
by progressively increasing the grid net until the com-
puted volume-averaged porosity (&) and effective con-
ductivity (k) no longer change noticeably. As expected,
with the increase in the grid net, the computation time
increases substantially. Table 1 and Fig. 7 show the
grid size effect on the effective thermal conductivity
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Grid dependency of the average porosity (g) and the effective
thermal conductivity (k),,

Grid (M, x M,) () (k),y (W/m K)
50 x 50 (A) 0.262 28.27
100 x 100 (B) 0.277 18.01
200 x 200 (C) 0.279 17.83
300 x 300 (D) 0.277 16.31
400 x 400 (E) 0.277 16.21

? The asymptotic average porosity is (&) y_, ., =0.278.

and the average porosity for the asymptotic average
porosity (¢) = 0.278. The corresponding grid nets are
shown in Fig. 4, for grid nets A to E. As a compro-
mise, the 300 x 300 grid (grid net D) is chosen for this
microstructure.
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Fig. 7. The variation of average porosity (¢) along (a) x-direc-

tion, and (b) y-direction and their dependence on grid system
of Table 1.
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Fig. 8. Typical pore morphology ({¢) = 0.092) obtained from
diffusion-limited simulation by Smith and Collins [34].

For lower porosities, a larger grid net is needed to
reach the asymptotic average porosity and effective
conductivity. For example, for (¢) =0.092 the com-
puted (k),, may not reach the asymptotic value even
when theﬂlargest available grid (i.e., 2000 x 2000) is
used. This structure is shown in Fig. 8. Also, note that
for the columnar structures, the structural (and conse-
quently the transport) anisotropy is quite substantial.

4. Boltzmann transport equation

The Boltzmann transport equation is often used to
model transport by particles that follow an arbitrary
distribution. In a general form, the equation can be
written as [8]

af , , af

- -V, V.f=1=.

8t+up J+a, -V, f <3Z>x )
Using the analogy between photons and phonons as
wave packets of energy, the intensity of phonons 7 is
defined as [26]
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1

I=—
47

Z J |up,m |fhPCUDm (0)) do, (6)
0

m

where D is the density of the states per unit volume, f°

is the phonon distribution function, /p is the Planck’s
constant, |up,,| is the magnitude of the phonon group
velocity, and o is the phonon frequency. The sum-
mation index m is made over the three phonon polariz-
ations. By multiplying Eq. (5) by |upmulhpwD,(w) and
integrating it over all frequencies, the Boltzmann trans-
port equation can be transformed to the equation of
phonon radiative transfer [16], i.e.,

Lol
u, 0t

I 1%(T(x))—1

al

e W) =1 7
+'u8x+€8y upt(T) @
where p and ¢ are the directional cosines. It is evident
that this equation is similar to the photon equation of

radiative transfer [27]

tor, ar ol
ot luax Cay— alb Jex

+ = J 1(r.8")0(r, &', §) dov’, ®)
47'C 4n

where ¢ is the speed of light, 0, 0e, and o, are
absorption, extinction, and scattering coefficients, and
@ is the phase function. This similarity gives an easy
access to the solution methods which are well devel-
oped for the equation of radiative transfer.

For steady state, the two equations (7) and (8) are
exactly the same if scattering is neglected (i.e., gs = 0).
This does not mean that Eq. (7) can deal with only
non-scattering media. As will be shown later, the main
reduction of the heat flow rate is due to the scattering
mechanism such as defects, dislocations, boundaries
and particle interactions. So the inclusion of scattering
effects is important in phonon transport. The various
scatterings are modelled using relaxation time 7, in Eq.
(7). In Eq. (7), several bulk material properties are pre-
scribed, these include the specific heat, the phonon
group velocity, and the phonon mean-free path (or
relaxation time).

Once the intensity is found by solving Eq. (7), the
radiative heat flux can be determined from

4(r) = L_4 jl(r, ®) db. 9

4.1. Solution method and verification

The discrete ordinate method (Sy method) is a tool
to transform the equation of radiative transfer into a
set of simultaneous partial differential equations. This
is based on a discrete representation of the directional
variation of the radiative intensity /. A solution to the

transport problem is found by solving the equation of
radiative transfer for a set of discrete directions span-
ning the entire solid angle. The integrals over the solid
angle are approximated by numerical quadrature. This
method is widely accepted and a comprehensive dis-
cussion is available [28].

For a specific ordinate direction m, defined by
D, = (U Em)s Eq. (7) can be approximated as

d d
[ﬂrna + fma_y + Ua(-x, }’)]Im(.x, ¥)
= 0a(¥, y)lb(x, »). (10)

To solve the discrete ordinate equation, the rectangular
enclosure is subdivided into small control volumes in a
M, x M, net. Within each control volume, the
spatially discretized equation for the radiative intensity
in the ordinate direction @,, is derived as

[ﬂm(AHIem - Awlwm)
+ ém(BnInm - leym)] + A lem =A VSpm (1 1)

for m=1,..., M,

where e, w, n, s are the boundaries in the compass
directions and p is the center point of the control
volume. The area and volume elements assume a unit
depth in the z direction.

The number of unknown 7Is in Eq. (11) are reduced
by using one of several relationships between the con-
trol-volume boundary intensities and the center point
intensity. The weighted diamond difference scheme is
used in this study to relate the intensities in the control
volume. The weighted relationship of the cell boundary
intensities to the average intensity in the cell is
expressed as

Ly = Wymlem + (1 = W )Mym

= wymInm + (l - wym)’xnr (12)

To avoid negative intensities, a scheme suggested by
Lathrop [29] is applied in selecting the differencing
weights.

If I,,, and I, are assumed to be known, where the
iteration is in the direction with a positive directional
cosines and in increasing space dimensions, then Eq.
(11) can be reduced to eliminate the intensities /., and
Ly, using Eq. (12). Solving for I, yields

_ IlmAlwm + émBIsm +A VS]’W’
o :umAe/wxm + émBﬂ/W}’m + AV’ (13)

for ll'l'”’l’ i}n > 05



J.D. Chung, M. Kaviany | Int. J. Heat Mass Transfer 43 (2000) 521-538 529

where

4= (1 - me)Ae/wxm + 4,

B= (1 — w},m)B,, /Wym + By. (14)

Special attention is needed for the selection of the ordi-
nates set, u,, and &,. To satisfy the continuity at the
interface, the set of ordinates and weights should also
satisfy the first moment over a half range, that is,

J |ﬁ-§|d<15:J f§dd=n= ) wh-§ (I5)
n-§<0 0-§>0

n-§>0

The set of ordinates and weights satisfying Eq. (15) is
taken from Fiveland [30].

Once all directional intensities for each finite volume
have been calculated, the values for the boundary and
source terms may be updated, and the procedure is
repeated until the convergence criteria are met.
Convergence is checked during the iteration process
using the cell-average intensities at the current and the
previous iterations. It is assumed that the convergence
is obtained when the maximum percentage error of the
intensities is less than 0.0001%.

In the limit where the domain length scale is large
compared to phonon mean-free path, the Fourier law
should be recovered. In this optically thick case, the
diffusion approximation is valid. Considering the jump
boundary condition, Deissler suggested the following
solution [31]

_ose(T1—T%) 4ossT3AT
TG (B
4\ 4\ 2

Comparing Eq. (16) with Egs. (1) and (2), the Stefan—
Boltzmann constant gsg for phonon can be obtained
as

(16)

_ PGty
1673

OsB 17)
As a validation, as shown in Fig. 9, the predicted ther-
mal conductivity of silicon approaches as asymptotic
behavior (Fourier behavior) as the domain size
increases.

For a further validation, the thermal conductivity of
silicon layer is compared with the experiment by
Asheghi et al. [32]. Good agreement is found in the ex-
perimental error range. Also, the predicted results for
the one-dimensional, multi-layer composites are com-
pared with the available results [18]. The boundary
and interface between layers are shown in Fig. 10(a).
Complete agreement is found, as shown in Fig. 10(b).
The room-temperature properties used in the compu-
tation of thermal conductivity of GaAs/AlAs and Si/

— T T -
140 PREPSIR SRS
i " 1/h~
120 Asymptote
x 100
£ b7 ]
2 801}/
A / ,
B L/
= 60f .
“ =
40 | ]
f - --- Bulk i
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1)) S PV AR RO TR ' L T .

0 5 10 15 20 25 30 35 40
1/

Fig. 9. Predicted asymptotic behavior of thermal conductivity
with respect to acoustical thickness.

Ge layer composites are given in Table 2. Note that
the lattice mismatch between Si/Ge layer composite is
much larger than that of GaAs/AlAs, but the agree-
ments are still fair. This agreement gives confidence to
the analysis of porous silicon, where phonons are
almost totally reflected from silicon—air interface.

4.2. Boundary and pore interface conditions

The treatment of boundaries and pore interface in
the two-dimensional, unit-cell model (Fig. 6(a)) and
the network model (Fig. 6(b)) is similar to that for the
one-dimensional, multi-layer composites.

Ziman [8] proposed the following expression for esti-
mating the interface scattering parameter p:

pzexp(— 16713(53//12), (18)

where 1 is the carrier wavelength and o, is the mean
interface roughness. At room temperature, the domi-
nant phonon wavelength is A~10-20 A. Then, even
for a monolayer the roughness is 6, ~3 A. This gives
an interface scattering parameter of nearly zero, and
allows for the assumption of a totally diffuse interface.

The interface between layers reflects and transmits

Table 2
Room-temperature properties used in the computation of the
thermal conductivity of GaAs/AlAs and Si/Ge superlattices

Material pep x 10 (J/m* K) up (m/s) 2o (A)
GaAs 1.71 3700 208
AlAs 1.58 4430 377
Si 1.66 6400 409
Ge 1.67 3900 275
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Fig. 10. Comparison of the predicted thickness dependence of
thermal conductivity, in multi-layer composites (a) with the
available predictions (b).

phonons and adds to the resistance to the heat flow.
Referring to Fig. 10(a) for a totally diffuse interface,
the energy balance at bottom surface gives
e Rao [ ., _ ,
(19)
+ — qulgz(cf =0)do’,
n

where I;’z is the phonon intensity at £ = 0 in the layer
preceding layer 1. Using periodic conditions, 1;2 is
expressed as [18]

up2pcp2(To — T1)

+ o+
Ip=1y+ 47

(20)
Similarly, the energy balance at the internal interface
and the top surface, forming one period of the multi-
layer composite, gives

O XA
. e
[T ,
w1 o= o,
=) =" (015 = &) do’
e
e L (S
T
=t = "2 orie =2 a0
3

—+

T [ 'y — ’
2 or, = a0,

where the integration with respect to the solid angle is
over the half space and Ry; and Tg; are the reflectivity
and transmissivity at an interface for phonons incident
from the i layer towards the j layer.

The relation between the reflectivity and transmiss-
ivity, and the transmissivity at the totally diffuse scat-
tering limit, are obtained based on the diffuse scatter-
ing limit model of Swartz and Pohl [33], i.e.,

Tyi = Rayj=1—Ty; (24)

PCp.jUp.j

Td,'/' = .
PCpiltp,i + PCp,jUp, j

(25

4.3. Unit-cell model

The unit cell described in Fig. 6(a) is a starting point
for modeling the effective thermal conductivity of a
porous medium. When the porous medium has a per-
iodic structure, successful predictions have been made
[2-4]. These are based on the Fourier treatment and
the effect of the unit cell (or pore) size has not yet
been addressed. On the other hand, the existing treat-
ments based on Boltzmann transport equation are for
one-dimensional layers, although it gives elegant semi-
analytic solution. Considering the practical appli-
cations such as the porous silicon, the two-dimensional
extension of the Boltzmann approach is needed.

Here we have considered three pore sizes (d =1, 3, 5
nm). Given the pore sizes, the unit cell linear dimen-
sion / is determined using the porosity defined as
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Table 3
The effect of grid size on the effective conductivity (k),, for
the S, quadrature set for (g) = 0.201

(k),y (W/m K)

Grid
d=1nm d=3nm

67 x 67 8.8659 21.4229
87 x 87 6.0112 15.1683
131 x 131 5.5386 13.9619
159 x 159 6.3194 15.6150
203 x 203 4.8340 11.9502
251 x 251 4.2461 10.3032
315 x 315 3.3201 8.3454

e=d?/I*. The effective thermal conductivity is then
determined from

@)y
kyy) = ———— 2
(ki) = ~ g 26)
where the y-direction radiation heat flux (g),, is
1 ! !
@ =57] | a0 ax+ | aunaxi. @

The radiation heat flux, ¢,, is defined in Eq. (9). The
convergence criterion requires that the first and second
terms be very close (i.e., much less than 1% for small
network grid and as large as a few percent for the lar-
gest grid).

4.4. Selection of representative elementary volume

For the random pore network model, the representa-
tive elementary volume is similar to that of Section
3.2. Table 3 lists the grid systems tested for the pore
network with the asymptotic average porosity of
(¢) = 0.201. The corresponding selected pore distri-
bution is shown in Fig. 11 for grids A to G. For com-
putational economy, the 315 x 315 grid (grid G) is
selected for this porosity. Note that every grid point in
Fig. 4 corresponds to four subgrids (two in x-direction
and two in y-direction) in Fig. 11, since additional sub-
grids are needed to handle the pore interface. Fig. 7(a)
and (b) show the porosity convergence for this grid
set.

Table 4 shows the effect of the discrete ordinate
quadrature sets for a 67 x 67 grid net, d =1 nm and
(e) = 0.201, on the predicted effective conductivity.
The S4 approximation, which computes 12 fluxes over
the hemisphere, is used for all of cases considered.

300 Grid G

Grid F
250

[l
L T

Grid B
200

Grid D i

b
150 Grid C

L 2

100 5 Grid B

Grid A

50

:“Jujl-j 1

50 100 150 200 250 300

Fig. 11. The grid system used and the typical pore mor-
phology ((¢) = 0.201).

5. Results and discussion

To show the effect of pore-network randomness, we
use the Fourier treatment of Section 3 and to show the
effect of pore size, we use the Boltzmann treatment of
Section 4. Gesele et al. [11] suggest a simple relation
for the combined effects of the morphology and the
size. They suggest that Eq. (2) be modified as

1
k) = 301 = @) pepitpl, (28)

where they suggest that the pore-network randomness
effect be modeled with (1 — (¢))’ and the pore-size
effect with /. However, this does not correctly predict
the experiments for low porosity and does not satisfy
the (¢)—0 asymptote, unless / is continuously changed
with /— /4, for (¢)—0.

To explain the effect of pore-network randomness
and the pore size on (K), four different computations
are made, namely, (1) Fourier treatment plus unit cell,
(2) Fourier treatment plus network, (3) Boltzmann

Table 4
The effect of the discrete ordinate quadrature sets (67 x 67
grid, d = 1 nm), (¢) = 0.201 on the effective conductivity (k),,

(k)y, (W/m K)

Sy 8.8659
Se 8.9223
Sg 8.6231
Sio 9.0529
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Fig. 12. The pore-network structure and predicted temperature distribution for grid D in Fig. 4. The heat flows across the porous

layer.

treatment plus unit cell, and (4) Boltzmann treatment
plus network.

5.1. Effect of pore-network randomness

To demonstrate the effect of pore-network random-
ness, (k),, is determined based on the Fourier treat-
ment using the simulated pore-network model. The
pore structure and the distribution of the normalized
temperature (7' — T5)/(Ty — T;), for grid D in Fig. 4,
are shown together in Fig. 12. The air-filled pores are
shown with shade. Fig. 12 shows how the high conduc-
tivity solid fingers the heat into the layer, while the
low conductivity air causes a large temperature drop.
The isothermal lines follow the high-conductivity solid-
phase distribution. Also note that the random pore
structure requires a large representative elementary
volume for achieving an asymptotic (grid-size indepen-
dent) behavior.

For a variety of applications, high porosity (e.g.,
(&) > 0.4) porous silicon is more desirable and most ex-
periments have been conducted for this range.
However, the simulation of Smith and Collins [34] are
for relatively low porosities (i.e., (&) < 0.28). For com-
parison with the experiments, the low-porosity simu-
lations can be slightly extrapolated. Two additional
pore networks with slightly larger porosities
({e) = 0.322 and 0.380) are formed using the available
network for the largest porosity ((¢) = 0.278). Different
enlargement factors are applied to the solid phase and
the pore volume. Then the enlarged domain size is
scaled to its initial value. For validation of this pro-
cess, a pore network with (&) = 0.252, is produced
using the available pore network with (&) = 0.208. It is
found that the predicted effective thermal conduc-
tivities are in good agreement.

The uncertainty associated with extensive extrapol-
ations is partly due to the highly irregular pore struc-
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Fig. 13. The effect of pore-network randomness on effective
conductivity is shown by comparing the predicted effective
thermal conductivity using the Fourier treatment plus net-
work with the Fourier treatment plus unit cell.

ture and partly due to lack of availability of a large set
of simulated networks.

Fig. 13 shows the predicted variation of the effective
thermal conductivity (k),, with respect to porosity. By
noting the difference with the results of the unit-cell
model, we note that the heat transfer is significantly
hindered by the pore-network randomness.

5.2. Effect of phonon pore scattering

The mean-free path can be determined using Eq. (2).
At room temperature bulk thermal conductivity of sili-
con is ks =149 W/m K, and its volumetric heat ca-
pacity is pc, = 1.659 x 10° J/m*® K) [35]. A special
average of the transverse and the longitudinal phonon
velocities, uy! = $Quy b +u5})™" = 6.53 x 10° m/s, is
used [36]. This gives the bulk phonon mean-free path
Jpo~40 nm. According to Flick et al. [37], the size
effects on heat conduction becomes important when
() < 7Tppo =280 nm and this is larger than the average
pore size (d) for porous silicon considered here. The
small pore wall thickness introduces an additional re-
sistance to heat flow.

To apply the Boltzmann transport equation, the
wall-pore dimension should be larger than the phonon
wavelength. At room temperature, the phonon wave-
length for silicon is approximately a0p/T ~ 1.1 nm
[17]. Also, the quantum size effect is negligible in this
large length scale. We also note that as the linear
dimension of the representative elementary volume
increases, the optical thickness increases. Also, when
the transmission through the network is very small, nu-
merical difficulties are encountered [38]. The average
pore size for porous silicon can be controlled over
three orders of magnitude from order of 1-100 nm.
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Fig. 14. The effect of phonon pore scattering on the effective
conductivity is shown by comparing the predicted effective
thermal conductivity using the Fourier treatment plus unit
cell with the Boltzmann treatment plus unit cell.

Based on the experimental results and to demonstrate
the size effect, three pore sizes ({(d) =1, 3 and 5 nm)
are used.

Fig. 14 shows the predicted effective thermal conduc-
tivity, defined in Eq. (26), for the unit-cell model using
the Fourier and Boltzmann treatments. Since the effec-
tive phonon mean-free path 4, is limited by the pore
boundary scattering, the reduction of effective thermal
conductivity is apparent as the pore size (d) is
decreased. Abrupt changes near ¢ = 0.2 is found. This
occurs as the ratio of pore size to the unit cell size
reaches a threshold value where a significant amount
of the phonon energy is reflected at the pore boundary.
Note that the pore boundary scattering is dominant
here, because of the long bulk mean-free path 4,
compared to the unit cell size (/).

Fig. 15 shows the temperature distributions obtained
from Boltzmann treatment (Fig. 15(a)—(e)) with respect
to pore size d. The pore size varies between d = 1-500
nm. The asymptotic temperature distribution (d — 00)
obtained from the Fourier treatment is also shown
(Fig. 15(f)). The results are for ¢ =0.16. The agree-
ment between the two treatments, for large d, is clear
in Fig. 15. From the Boltzmann treatment with a small
pore size, a temperature jump is found at the interface.
This is similar to that for the one-dimensional, multi-
layer composite. Due to the total reflection at the pore
boundary, some localized hot and cold regions are
found below and above the pore.

To account for the size effect, Majumdar [16]
suggests a size-affected, mean-free path, given by
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Jp0

i
1 ~ 7
T3

Jp = (29)

which may be used to determine ks in Eq. (2). For a
one-dimensional layer, the characteristic length /" is the
layer thickness. But, for a two-dimensional unit cell,
we use an equivalent length defined as /> =[% —d?.
This is an equivalent length after the pore is removed
from the unit cell. Using this modified ks in the
Fourier treatment of unit-cell model, the predicted
effective conductivities are shown in Fig. 14. The good
agreement with the results of the Boltzmann treatment
at the higher porosity is noted, although the asymp-
totic behavior at low porosity is not in agreement.
Also shown in Fig. 13 is the result using the Eq. (29)
with d =10 nm. This gives 4, = 0.1584,0, which gives
a solid conductivity ks = 23.5 W/m K. This character-
istic length represents experimental samples A, B and a
in Fig. 17.

5.3. Lateral effective conductivity

Due to the anisotropic pore morphology, the effec-
tive conductivity is not isotropic and a preferential
conduction occurs along the y direction, shown in Fig.
1. The predicted variation of the lateral effective con-
ductivity (k),, with respect to porosity is shown in
Fig. 16. Here the ratio (k)./(k),, is also used to
emphasize the anisotropy. There are no available ex-
perimental data for comparison. The overall trend in
the porosity dependency is similar to that of (k),,. The
pore branches completely break the solid-phase con-
nectivity and the resulting serial arrangement of phases
leads to a very low thermal conductivity. This is not
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expected in three-dimensional structures, where the
solid-phase continuity results in higher effective con-
ductivity.

6. Comparison with experiments

The available experimental results are too few and
not consistent. They also lack sufficient geometrical in-
formation for a direct comparison with the predictions.
Drost et al. [9] used a dynamic conductivity measure-
ment technique based on the thermal waves traveling
in the specimen. However, as mentioned by Benedetto
et al. [10], the measurement technique by Drost et al.
is rather complicated and cannot be used for different
sample types. Also, the undesirable effect of SiC layers,
which are needed to cover the porous silicon, in the
dynamic conductivity measurement, should be
removed. Benedetto et al. [10] measured (k),, for po-
rous-silicon layers using a photoacoustic technique and
Gesele et al. [11] used the 3-w technique. The measure-
ments are summarized in Table 5. Among the par-
ameters, the porosity, the morphology, and the pore
size are used in the prediction. The pore sizes reported
by Drost et al., and Gesele et al., are well documented.
However, the pore sizes in the experiment of Benedetto
et al., are not given and are assumed to be similar to
those in experiments of Beale et al. [13].

The experimental results for (k),, are shown along
with the various predictions in Fig. 17. Samples A, B,
IL, III, and ‘a’ have similar pore structure as shown in
Fig. 4, which is a highly-branched, columnar structure.
Sample III shows a large difference between the oxi-
dized and the fresh samples and the high values are
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Fig. 16. The predicted variation of the lateral effective thermal conductivity (k),, with respect to porosity e.



536

Table 5

The doping and etching parameters, and experimental results for various porous silicon samples

111

11

Sample®

0.02

0.010-0.018 0.01

1-2

38.0-52.0

10
12
86

10
12
86
720

0.01
12
15

1

0.0

Resistivity, p, (Q cm)
HF concentration (%)

48

20

50

30
420

15

Current density (mA/cm?)

Etching time (s)

240

900

3000
None
0.40
175

1800

1800
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None
0.45
10

Halogen
0.53

None
0.40
10

None
0.40

75

[llumination applied

Porosity, ¢

0.89
35

0.79
31

0.71
31

0.64
31

0.64
21

0.50
10

0.60
23

10

Layer thickness, 6 (um)
Silicon wafer type

Morphology

Equiaxed

2.0+0.3
0.135

Columnar
~ 100
80/2.7

Equiaxed

Columnar

4.5+0.6
0.035

2.7+0.3
0.058

1.7+0.5
0.196

9.0+3.0
0.79

>100

~3
1.2/1.3¢

~500/ ~200
10.4/31.2°

~12 _

3.9

> 12
2.5

Pore size, d (nm)

1.75/1.85

31.2

(k),y (W/m K)

& A-D: Benedetto et al. [10]; I-III: Drost et al. [9]; a—e: Gessele et al. [11].

® Two layers. One layer of (k)

31.2 with pore diameter 200 nm.

10.4 with pore diameter 500 nm and the other of (k),, =

¢ The upper parts are for specimen as prepared and the lower parts are for oxidized specimen.

not in line with the other experimental results. Note
that the n-type silicon sample with the light illumi-
nation (II), is very similar to the p-type silicon samples
(A, B, III and a). The important difference is in its
large pore size ({d)~ 100 nm) compared to the p-type
samples ({(d)~10 nm for A, B, and a). Sample C is
also n-type, but light illumination is not applied. Smith
and Collins [14] report that the pore-like strait cylindri-
cal channels are produced for this sample. Thus for
smaple C, the heat flow is not as much prohibited as
the highly branched structures. This explains the large
effective thermal conductivity of sample C. The results
for sample III without oxidation is questionable,
because the measured thermal conductivity is almost
near the value for the parallel arrangement of phases
which is the theoretical upper limit.

Samples I and b—e also have similar pore structures,
i.e., equiaxed. Thus, their thermal conductivity follows
the same trend, but is lower than that of columnar
structures.

Also shown in Fig. 17 are the various predictions.
These are Fourier treatments with the network model
and Boltzmann treatment with the same structure
models. The network models are limited to (&) < 0.4.
Starting with the Boltzmann treatment with the unit-
cell model, we note that the effective thermal conduc-
tivity for pore sizes (d) =1 and 3 nm are lower than
the experiments A and B. Since the thermal conduc-
tivity reduction is due to a combined effect of the pore
randomness and the pore size, the result of unit-cell
model, which includes only the size effect, should not
exceed the experimental results. There are several ex-
planations for this. The most obvious one is the uncer-
tainty in the estimation of the pore size. As the pore
size increases (i.e., (d) = 5 nm), the predicted effective
thermal conductivity becomes larger than the exper-
iments. Note that the pore size definition used in the
experiments is different from that used in the simu-
lations. As shown in Fig. 6(b), the pore size in the
simulation is the grid size (as compared to the actual
pore size in experiments A, B, and C as shown in Fig.
6(b)). Then we expect the simulated pore sizes to be
smaller than the experiments. Currently there is no
clear correspondence between these two. The two-
dimensional limitation is another reason for this differ-
ence. The three-dimensional effective thermal conduc-
tivity is expected to be larger [7].

Using the random pore network, the predicted effec-
tive thermal conductivity using the Fourier treatment
is shown in Fig. 17. As is evident, the predicted effec-
tive thermal conductivity is larger than the experiments
and this may be due to the size effect (pore scattering).

The combined effect of the pore-network random-
ness and pore size is shown through the Boltzmann
treatment plus the random network model in
Fig. 17. Although only three different porosities
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Fig. 17. Comparison of the predicted effective thermal conductivity of porous silicon (k)

(6=0.177,0.201 and 0.271) and two different pore
sizes ((d) = 1 and 3 nm) are simulated, the significant
reduction in the heat flow rate by pore randomness
and pore scattering, is apparent.

7. Conclusions

Direct simulation of conduction through anisotropic
porous silicon layers is made, using two-dimensional
matrix structures along with the Boltzmann transport
equation. The observed low conductivity, i.e., lower
effective phonon mean-free path, can be explained with
the inclusion of the effects of the phonon pore scatter-
ing and the pore randomness. The hindering effect of
the phonon pore scattering (due to the reflection from
at the solid-pore interface) is significant. Also, due to
the dendritic structure of the pores, the hindering effect
of the pore-network randomness is also significant.
The predictions are compared with the existing exper-
iments and considering the lack of structural data in
the experiments, a good agreement is found.

€

yy» With the available experiments.
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